Заказать проведение днк теста

Оставьте свой телефон и мы перезвоним Вам в ближайшее время

Пожалуйста подождите

ДНК (Дезоксирибонуклеиновая кислота) – это макромолекула, являющаяся носителем информации об организме от одного поколения к другому.
Белки образуют полипептидные цепи, информацию о которых хранит дезоксирибонуклеиновая кислота. Каждый участок, в котором заключаются данные о такой цепи, называется геном. Молекулы дезоксирибонуклеиновой кислоты, находящиеся внутри одной клетки, в своей совокупности представляют носитель генетической информации обо всём организме.

Историческая справка

Открытие молекулы дезоксирибонуклеиновой кислоты было произведено ещё в 1869 году. Швейцарский физиолог ФридрихДнк Мишер обнаружил вещество, которое назвал нуклеин. Значимость великого открытия поначалу не была оценена, как полагается. Длительное время считалось, что нуклеин есть не что иное, как запасник фосфора.
С приходом XX века изучение дезоксирибонуклеиновой кислоты продолжалось, однако, в начале века подавляющее большинство учёных этой области даже не предполагало, что ДНК является передатчиком информации. По их мнению, слишком проста и повторяющаяся у неё структура, чтобы нести подобную сложную функцию.

Научный прорыв случился в 1944 году, когда было определено, что ДНК имеет большую значимость для науки. Учёный Освальд Эйвери вместе с двумя коллегами Маклином Маккарти и Колином Маклауд занимались исследованиями дезоксирибонуклеиновой кислоты, результатом их деятельности стала публикация в журнале «The Journal of Experimental Medicine». Статья доказывала, что дезоксирибонуклеиновая кислота представляет собой «материал» генов и является носителем наследственной информации.

ДНК – передача наследственной информации

Как только было доказано, что дезоксирибонуклеиновая кислота есть не что иное, как генокод организма и имеет важную роль как носитель информации, исследования учёных-биологов взяли правильное направление. Началось стремительное изучение цепей и взаимосвязей. До 1950 года удалось определить только то, что молекула ДНК состоит из цепей нуклидов, но как они между собой соединены и сколько их, оставалось неизвестным.
Только в 1953 году было определено, что внутри молекулы дезоксирибонуклеиновой кислоты существуют взаимосвязи азотистых оснований разных типов. Сама молекула ДНК была представлена, как двойная спираль.
Передачу наследственной информации дезоксирибонуклеиновой кислотой можно сравнить с тем, как люди обмениваются информацией. У нас это происходит с использованием звуков и букв. У ДНК с применением оснований азотистой кислоты.
Каждая спираль макромолекулы состоит из азотистых оснований, рибоксиновой кислоты и остатка фосфорной кислоты. Звенья могут иметь различную последовательность, главной их характеристикой является то, что все они тесно связаны с последовательностью второй спирали. Это свойство получило название правило комплементарности.
Двойная спираль полимерных цепей похожа на верёвочную лестницу. Каждая ступень в ней – это нуклеотидные пары, которые связывает сахарофосфатный состав. Главным отличием молекулы ДНК друг от друга является последовательность пар. Но именно это расположение и является кодом, согласно которому определяется порядок производимых клетками белков.

ДнкСравнивая процесс с человеческим типом носителем и передачи информации, можно сказать, что в данном случае мы имеем дело с бедным алфавитом, в котором наличествует всего четыре буквы. Все слова, а также предложения складываются из них.
Расшифровка кода была осуществлена тогда, когда люди поняли, что код не является двоичным, а триплетный. Каждая аминокислота в белке абсолютно соответствует последовательности трёх нуклеотидов в РНК и ДНК, кодонов.

Дезоксирибонуклеиновой кислотой передаёт информацию два раза: при делении на две части и при кодировании белка. Таким образом, данные передаются только что образованной клетке. В процессе репликации ДНК снимает с себя копию. Происходит разделение нитей, связывающих спираль и выстраивание новой комплементарной цепи. В каждой из двух вновь образованных клеток имеются по идентичной копии дезоксирибонуклеиновой кислоты. Таким образом, сохраняется вся генетическая информация.

Практическое применение знаний о дезоксирибонуклеиновой кислоте

Знания, полученные о молекуле ДНК, сложно переоценить. Практическое их применение имеет для человечества огромное значение. По сути, открыв тайну макромолекулы, люди получили доступ к генам. Развитие науки о дезоксирибонуклеиновой кислоте открывает неограниченные возможности для биологии и медицины.
Знания о наследственной природе дезоксирибонуклеиновой кислоты нашли практическое применение в генной инженерии, которая оказывает влияние на развитие клинической медицины. Методы, построенные на основе изучения рекомбинантных ДНК, открыли новые возможности изучения наследственных болезней.
Используемые технологии рекомбинантных молекул ДНК стало революционным для науки, изучающей живые клетки. Перед медициной и промышленностью открылись новые пути к получению в достаточном количестве тех белков, которые прежде получались в ограниченных количествах, либо не получались вообще.

Увы, исследования далеки до своего завершения. Однако, на сегодняшний день сделано много. Это методы клонирования ДНК и генная инженерия. Настоящим прорывом медицины стала технология рекомбинантных ДНК. Она позволяет производить пересадку генетического материала из одного организма в другой. Направление находится в процессе изучения и развития, однако, некоторые его находки уже активно применяются на практике.

Необходимость применения знаний о ДНК на практике

Генная терапия сделала возможным вводить в организмы больных людей полностью здоровые гены, способные полноценно Днкработать. Это позволяет производить восстановление метаболических нарушений, которые были вызваны генами мутантами. Сегодня таким способом лечат детей с иммунодефицитом, который вызван дефектом аденозиндезаминазы.
Разработка методов лечения многих заболеваний с помощью технологии рекомбинантных ДНК находится в стадии клинических исследований. Это такие заболевания как:
• Гемофилия В, определяемая по наличию кровоточивости по типу гематом;
• Семейная гиперхолестеринемия;
• Му-ковисцидоз и т.д.

Если в медицине генетика находится в процессе активного развития, то наиболее веские практические результаты она дала в сельском хозяйстве. Благодаря ей, сельскохозяйственное производство вышло на новый уровень. Выводятся новые сорта растений, представляющих интерес для человечества. Задача учёных состоит в том, чтобы не только выводить новые сорта, но и прививать им максимально полезные качества.

Перспективы развития науки о ДНК

Наука о дезоксирибонуклеиновой кислоте активно развивается, но, не смотря на это, она всё же ещё находится на начальном этапе своего развития. Чего ожидают учёные на конечном этапе? Это и полная победа над такими явлениями, как болезни и голод, и возможность клонировать живые организмы, менять черты организмов. Возможно, уже скоро будет выведен новый тип человека, который будет тем совершенным образом, которому все мы стремимся на протяжении своей истории.
Разгадка тайны ДНК стала началом новой эры развития биологии. По мере её изучения имели место не только научные открытия, но и курьёзы, и занимательные случаи.
К примеру, при изучении мух дрозофил, учёные стали давать своим открытиям смешные названия. Пара генов, приводящих к отсутствию у самок и самцов внешних половых органов, получили кукольное название «Barbie» и «Ken», а мутантный ген, обладатель которого быстро умирает, стал называться в честь известного мультипликационного героя из мультфильма «Соузпарк» «Kenny».

Изучением дезоксирибонуклеиновой кислоты и применением на практике результатов исследований занимаются учёные. Результаты их работы важны для человечества. В силах генетиков и продвигаемой ими науки изменить мир, сделать его лучше.

Заказать проведение днк теста

Оставьте свой телефон и мы перезвоним Вам в ближайшее время

Пожалуйста подождите